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Abstract In this paper, we derive some existence results for generalized variational inequal-
ities associated with mappings satisfying the (S)+ condition. The relation between the (S)+
and (S)1+ conditions is discussed. As an application, we also consider multivalued comple-
mentarity problems associated with mappings satisfying the (S)+ condition, and prove a
theorem to characterize the solvability of such problems in terms of exceptional families of
elements.
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1 Introduction

For any given nonempty sets � and W , a mapping T : � −→ 2W will be called a mul-
tivalued mapping from � into W , where 2W denotes the set of all subsets of W . The set
G(T ) = {(x, y) ∈ � × W : y ∈ T (x)} is the graph of T .

Throughout this paper, all topological vector spaces are real and Hausdorff. For a topo-
logical vector space X , the set of all continuous linear mappings from X into IR is denoted
by X∗. For any given multivalued mapping T from a nonempty convex subset K of X into
X∗ with nonempty values, the generalized variational inequality GVI(T, K ) is the problem
to find (x, y) ∈ G(T ) such that

〈y, u − x〉 ≥ 0 for all u ∈ K .

Such a pair (x, y) will be called a solution of the problem GVI(T, K ). When every T (x) is a
singleton, the problem GVI(T, K ) reduces to the variational inequality VI(T, K ) associated
with the single valued operator T : K −→ X∗.
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In literature, most of existence results for generalized variational inequalities are
established by requiring the associated mappings to be monotone or algebraic pseudomono-
tone in the sense of Karamardian. In this paper, we shall derive existence results for gen-
eralized variational inequalities associated with multivalued mappings satisfying the (S)+
condition. The (S)+ condition can be regarded as a generalized monotonicity. There is another
such a condition, called the (S)1+ condition, which is closely related to the (S)+ condition.
See [6,10] for a discussion on generalized variational inequalities associated with mappings
satisfying the (S)1+ condition.

The (S)+ condition for multivalued operators will be given in Sect. 2. As proved in [13],
it turns out that a multivalued operator must satisfy the (S)1+ condition when it satisfies the
(S)+ condition. However, the opposite implication is in general undetermined. In Sect. 2,
we shall also give some conditions to ensure that a multivalued operator satisfies the (S)+
condition when it satisfies the (S)1+ condition.

In Sect. 3, some existence results for generalized variational inequalities will be estab-
lished. With the arguments given in Sect. 2, we prove an existence result in Theorem 3.3
which generalizes Theorem 4.3 of [6] to any normed space. As an application, in Sect. 4,
we consider multivalued complementarity problems associated with mappings satisfying the
(S)+ condition, and prove a theorem to characterize the solvability of such problems in terms
of exceptional families of elements.

2 The (S)+ condition

Before describing the (S)+ condition, we shall set up some notations that we need in the
sequel. Let X be a topological vector space. For given x ∈ X and y ∈ X∗, we shall use
〈y, x〉 for the value of y at x . For a net {xα} in X , we write xα −→ x ∈ X when {xα} con-
verges to x in the original topology on X , and write xα

w−→ x when {xα} weakly converges
to x .

Let X∗
s denote the space X∗ equipped with the weak-star topology, and write yα

w∗−→ y
when {yα} is a net in X∗ weak-star convergent to y ∈ X∗. There is a strong topology on
X∗, called the topology of bounded convergence, which coincides with the norm topology
on X∗ when X is a normed space. Let X∗

b denote the space X∗ equipped with the topology
of bounded convergence. Note that X∗

s and X∗
b are Hausdorff topological vector spaces [17,

pp. 79–80], and that X∗
b is a Banach space when X is a normed space [17, p. 42].

We are now ready to describe the (S)+ condition, and recall first the (S)+ condition
for single valued operators. In this paper, we shall only consider operators defined on non-
empty subsets of normed spaces. See [8] and references there in for a discussion on general
topological vector spaces or the vectorial (S)+ condition for single valued operators.

Single valued operators

The (S)+ condition for single valued operators defined on nonempty subsets of Banach
spaces was introduced by Browder [5]. This condition extends naturally to normed spaces.
Let K be a nonempty subset of a normed space X . A single valued operator T : K −→
X∗ is said to satisfy the (S)+ condition if xn −→ x for any sequence {xn}∞n=1 in K
satisfying

xn
w−→ x ∈ K and lim inf

n→∞ 〈T (xn), x − xn〉 ≥ 0. (1)

123



J Glob Optim (2008) 42:467–474 469

There is a weak (S)+ condition introduced by Chiang [7] stated as follows. The mapping
T given above satisfies the weak (S)+ condition if every sequence {xn}∞n=1 in K with the
properties given in (1) has a subsequence converging to x in norm.

For dealing with variational inequalities, the weak (S)+ condition works equally well as
the (S)+ condition does. Therefore, from now on, the weak (S)+ condition is referred to as
the (S)+ condition.

Multivalued operators

The (S)+ condition for multivalued mappings is formulated to include the (weak) (S)+
condition for single valued operators as a special case. A multivalued mapping T from a
nonempty subset K of a normed space X into X∗ is said to satisfy the (S)+ condition if for
any sequence {(xn, yn)}∞n=1 in G(T ) with

xn
w−→ x ∈ K and lim inf

n→∞ 〈yn, x − xn〉 ≥ 0 , (2)

there is a subsequence of {xn}∞n=1 converging to x in norm.
In the rest of this section, we shall compare the (S)+ condition to the (S)1+ condition. The

(S)1+ condition for single valued operators was introduced by Isac and Gowda [13], and that
for multivalued mappings was introduced by Cubiotti and Yao [10], stated as follows. The
multivalued mapping T given above is said to satisfy the (S)1+ condition if for any sequence
{(xn, yn)}∞n=1 in G(T ) with

xn
w−→ x ∈ K , yn

w∗−→ y ∈ X∗ and lim inf
n→∞ 〈yn, x − xn〉 ≥ 0 ,

there is a subsequence of {xn}∞n=1 converging to x in norm. A single valued mapping T :
K −→ X∗ satisfies the (S)1+ condition if the multivalued mapping x �−→ {T (x)} does. The
vectorial (S)1+ condition for generalized vector variational inequalities has been considered
by Chiang in [6].

It follows immediately from the definition that a multivalued mapping T as given above
must satisfy the (S)1+ condition when it satisfies the (S)+ condition. The opposite impli-
cation holds trivially whenever {yn}∞n=1 has a weak-star convergent subsequence for any
given sequence {(xn, yn)}∞n=1 in G(T ) satisfying the conditions given in (2). Since in a
normed space the weak compactness coincides with the sequentially weak compactness [1,
Eberlein–Šmulian Theorem, p. 256], we obtain the following theorem.

Theorem 2.1 Let T be a multivalued mapping from a nonempty subset K of a normed space
X into X∗ such that T (K ) is contained in a weakly compact subset of X∗

b . Then T satisfies
the (S)+ condition if and only if T satisfies the (S)1+ condition.

To weaken the relatively weak compactness of T (K ) in Theorem 2.1, we consider normed
spaces X having the property that {y ∈ X∗

b : ‖y‖ ≤ 1} is weak-star sequentially compact.
This property will be called the weak-star Bolzano–Weierstrass property. For instance, reflex-
ive Banach spaces and separable normed spaces [14, Sect. 7.2 Theorem 6] have the weak-star
Bolzano–Weierstrass property.

In a normed space X having the weak-star Bolzano–Weierstrass property, if a multivalued
mapping T : K −→ 2X∗

b is bounded, then {yn}∞n=1 has a weak-star convergent subsequece
whenever {(xn, yn)}∞n=1 is a sequence in G(T ) with {xn}∞n=1 weakly convergent to a point
in K . Recall that T : K −→ 2X∗

b is bounded if it maps every bounded subset of K into a
bounded set in X∗

b .
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Theorem 2.2 Let X be a normed space having the weak-star Bolzano–Weierstrass prop-
erty. If T is a bounded multivalued mapping from a nonempty subset K of X into X∗

b , then
T satisfies the (S)+ condition if and only if T satisfies the (S)1+ condition.

For barreled normed spaces X , a subset of X∗ is bounded in X∗
b if and only if it is bounded

in X∗
s ; see Corollary 4.1 and Theorem 4.2 in [17, p. 83]. Thus, we have:

Theorem 2.3 Let X be a barreled normed space having the weak-star Bolzano–Weierstrass
property. If T is bounded multivalued mapping from a nonempty subset K of X into X∗

s , then
T satisfies the (S)+ condition if and only if T satisfies the (S)1+ condition.

3 Generalized variational inequalities

To derive existence results for generalized variational inequalities, we need some preliminary
definitions and results for multivalued mappings. Let T : � −→ 2Y be a multivalued map-
ping, where � and Y are Hausdorff topological spaces.

(i) T is called upper semicontinuous at x0 ∈ � if for any open subset V of Y containing
T (x0) there is a neighborhood U ⊂ � of x0 such that T (U ) ⊂ V . While T is sim-
ply called upper semicontinuous on � if T is upper semicontinuous at every point of
�. Note that if T is upper semicontinuous on � and has compact values, and if � is
compact, then T (�) is compact; see Theorem VI.1.3 in [3, p. 110].

(ii) T is said to be closed if its graph G(T ) is a closed subset of the product space �× Y . If
T is upper semicontinuous on � and has closed values, then T is closed [2, Sect. 1.1,
Proposition 2, p. 41].

We are now ready to derive existence results, and start with considering multivalued
mappings defined on compact and convex subsets of topological vector spaces.

Theorem 3.1 Let K be a nonempty compact and convex subset of a Hausdorff topological
vector space X, and let T be an upper semicontinuous multivalued mapping from K into X∗

s
with nonempty convex and compact values.

(i) If T (K ) is bounded in X∗
b , then GVI(T, K ) has a solution.

(ii) If X is locally convex and barreled, then GVI(T, K ) has a solution.

Proof From [16, Theorem 3.2], the assertion (i) follows if for every u ∈ K ,

�(u) = {x ∈ K : 〈y, u − x〉 ≥ 0 for some y ∈ T (x)}
is closed. Notice that T is closed. By a similar argument as in the proof of [6, Proposition
2.2], the compactness of T (K ) in X∗

s together with its boundedness in X∗
b will imply that

every �(u) is closed.
When X is locally convex and barreled, the compactness of T (K ) in X∗

s implies the
boundedness of T (K ) in X∗

b ; see [17, Corollary 4.1 and Theorem 4.2, p. 83]. The assertion
(ii) now follows from (i) immediately.

Theorem 3.2 Let K be a nonempty weakly compact and convex subset of a normed space
X, and let T be a multivalued mapping from K into X∗. Then GVI(T, K ) has a solution if
the following conditions are satisfied.

(i) T has nonempty convex and closed values.
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(ii) T : co(E) −→ 2X∗
s is upper semicontinuous for every nonempty compact set E ⊂ K .

(iii) T satisfies the (S)+ condition.
(iv) T (K ) is bounded in X∗

b .

Proof The condition (iv) together with Alaoglu’s Theorem [9, p. 134] imply that T (K ) is
relatively compact in X∗

s . Then, by the condition (ii), T has compact values, and T (E) is
compact in X∗

s for every compact subset E of K .
Let F denote the family of all nonempty finite subsets of K . It follows from Theorem 3.1

that for every E ∈ F ,

�(E) = {x ∈ K : there exists y ∈ T (x) such that 〈y, u − x〉 ≥ 0 for all u ∈ co(E)} �= ∅ .

Let �(E)
w

denote the weak closure of �(E). Clearly, �(E1 ∪ E2) ⊂ �(E1) ∩ �(E2) for
any E1, E2 ∈ F . This implies that {�(E)

w : E ∈ F} has the finite intersection property.
Since K is weakly compact, we obtain

� =
⋂

E∈F
�(E)

w �= ∅ .

Choose any fixed x̂ ∈ �. For every E ∈ F , we write Ê = E ∪ {̂x} and

A(E) = {y ∈ T (̂x) : 〈y, u − x̂〉 ≥ 0 for all u ∈ co(Ê) }.
We claim that

A =
⋂

E∈F
A(E) �= ∅ .

This claim will complete the proof. Indeed, if ŷ ∈ A, then 〈ŷ, (1 − t )̂x + tu − x̂〉 ≥ 0 for
every u ∈ K and for 0 ≤ t ≤ 1. In particular, 〈ŷ, u − x̂〉 ≥ 0. This proves that (̂x, ŷ) is a
solution of GVI(T, K ).

For the proof of the claim, we first note that every A(E) is closed in X∗
s . Indeed, if {yα}

is a net in A(E) with yα
w∗−→ y ∈ X∗, then for u ∈ co(Ê),

〈y, u − x̂〉 = lim
α

〈yα, u − x̂〉 ≥ 0 .

The compactness of T (̂x) implies that y ∈ T (̂x) and y ∈ A(E).
Note that A(E1 ∪ E2) ⊂ A(E1) ∩ A(E2) for E1, E2 ∈ F . By the compactness of T (̂x),

the claim will follow if A(E) �= ∅ for every E ∈ F . Since x̂ ∈ �(Ê)
w

, there is a sequence
{xn}∞n=1 in �(Ê) such that xn

w−→ x̂ [15, Sect. 24, 1.7, p. 313]. For every n, there exists
yn ∈ T (xn) such that 〈yn, u − xn〉 ≥ 0 for all u ∈ co(Ê). In particular, 〈yn, x̂ − xn〉 ≥ 0 for
every n. The condition (iii) implies that {xn}∞n=1 has a subsequence {x p(n)}∞n=1 converging to
x̂ in norm. This subsequence together with x̂ form a compact subset E0 of K . By the com-
pactness of T (E0), {yp(n)}∞n=1 has a subnet {yα} converging in X∗

s to some y ∈ X∗. Since the
set {(x, y) ∈ co(E0)× X∗ : y ∈ T (x)} is closed in K × X∗

s , and since (xα, yα) −→ (̂x, y),
we have y ∈ T (̂x). Finally, since T (K ) is bounded in X∗

b , it follows that for every u ∈ co(Ê),

〈y, u − x̂〉 = lim
α

〈yα, u − xα〉 ≥ 0 .

Therefore, y ∈ A(E) and A(E) �= ∅.

From Theorems 2.1 and 3.2, we obtain the following result which generalizes Theorem
4.3 of [6] to any normed space.
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Theorem 3.3 Let K be a nonempty weakly compact and convex subset of a normed space
X, and let T be a multivalued mapping from K into X∗ satisfying the conditions (i) and (ii)
in Theorem 3.2. If T satisfies the (S)1+ condition and T (K ) is contained in a weakly compact
subset of X∗

b , then GVI(T, K ) has a solution.

When X is a normed space having the weak-star Bolzano–Weierstrass property, from
Theorems 2.2. and 3.2 we obtain some more existence results analogous to Theorem 3.3. For
barreled normed spaces, we have the following analogue of Theorem 3.2.

Theorem 3.4 Let K be a nonempty weakly compact and convex subset of a barreled normed
space X, and let T be a multivalued mapping from K into X∗. Then GVI(T, K ) has a solution
if the following conditions are satisfied.

(i) T has nonempty convex and compact values.
(ii) T : co(E) −→ 2X∗

s is upper semicontinuous for every nonempty compact set E ⊂ K .
(iii) T satisfies the (S)+ condition.

Proof The assertion follows from Theorem 3.2 and its proof whenever A(E) �= ∅ for every
E ∈ F , where A(E) and F are given in the proof of Theorem 3.2.

For every E ∈ F , let �(Ê) be given as before. The condition (iii) implies that there is a
sequence {xn}∞n=1 such that xn −→ x̂ . Let yn ∈ T (xn) be such that 〈yn, u − xn〉 ≥ 0 for all
u ∈ co(Ê). Let E0 denote the compact subset of K consisting of all xn together with x̂ . By
the same reasoning as in the proof of Theorem 3.2, {yn}∞n=1 has a subnet {yα} converging in
X∗

s to some y ∈ T (̂x). Since X is barreled, T (E0) is bounded in X∗
b . This implies that {yα}

is bounded in X∗
b , and that for every u ∈ co(Ê),

〈y, u − x̂〉 = lim
α

〈yα, u − xα〉 ≥ 0 .

The proof is complete.

As a consequence of Theorems 2.3 and 3.4, we obtain:

Theorem 3.5 Assume that X is a barreled normed space having the weak-star Bolzano–
Weierstrass property. Let K be a nonempty weakly compact and convex subset of X, and let
T be a bounded multivalued mapping from K into X∗

s satisfying the conditions (i) and (ii)
in Theorem 3.4. If T satisfies the (S)1+ condition, then GVI(T, K ) has a solution.

For a given single valued mapping T : K −→ X∗, the condition (ii) in Theorem 3.4
reduces to the continuity of the mapping T : co(E) −→ X∗

s for every nonempty compact
set E ⊂ K . In this case, we obtain existence results analogous to Theorems 3.4 and 3.5 for
VI(T, K ).

4 Exceptional families of elements

As applications of existence theorems obtained in Sect. 3, we shall prove existence results for
complementarity problems on Hilbert spaces associated with mappings satisfying the (S)+
condition, and characterize the solvability of such complementarity problems via exceptional
families of elements.

Throughout this section, let H denote a Hilbert space equipped with the inner product
〈·,·〉, and fix once for all a nonempty closed convex cone K in H with the dual cone:

K ∗ = {y ∈ H : 〈y, x〉 ≥ 0 for all x ∈ K }.
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For a given multivalued mapping T : K −→ 2H , the multivalued complementarity problem
MCP(T, K ) is to find a pair (̂x, ŷ) ∈ G(T ) such that ŷ ∈ K ∗ and 〈ŷ, x̂〉 = 0. Such a pair
(̂x, ŷ) is called a solution of MCP(T, K ). It is well known that MCP(T, K ) has a solution
if and only if GVI(T, K ) does; see e.g. Sect. 2.3 in [12] for a discussion.

For any given single valued mapping T : K −→ H , by considering the multivalued
mapping x �−→ {T (x)}, the corresponding multivalued complementarity problem becomes
the nonlinear complementarity problem NCP(T, K ) of finding x̂ ∈ K such that T (̂x) ∈ K ∗
and 〈T (̂x), x̂〉 = 0. Note that NCP(T, K ) has a solution if and only if VI(T, K ) does.

For a multivalued mapping T given above, a family {xr }r>0 of elements of K is called
an exceptional family of elements for (T, K ) [11, Sect. 8.3], denoted by EFE(T, K ), if
lim

r→∞ ‖xr‖ = +∞, and for every r > 0 there is a real number µr > 0 and an yr ∈ T (xr )

such that

µr xr + yr ∈ K ∗ and 〈µr xr + yr , xr 〉 = 0 .

When T is single valued, a family {xr }r>0 ⊂ K is called an EFE(T, K ) if the above condi-
tions hold with yr replaced by T (xr ) for every r > 0.

Theorem 4.1 Let T be a multivalued mapping from K into H with nonempty convex and
compact values. If

(i) T satisfies the (S)+ condition, and
(ii) T is upper semicontinuous on co(E) for every nonempty compact set E ⊂ K .

Then either MCP(T, K ) has a solution or there is an EFE(T, K ).

Proof We assume that MCP(T, K ) has no solutions, and prove that an EFE(T, K ) exists.
For every r > 0, the set Kr = {x ∈ K : ‖x‖ ≤ r} is weakly compact. It follows from
Theorem 3.4 that there exist xr ∈ Kr and yr ∈ T (xr ) such that 〈yr , u − xr 〉 ≥ 0 for all
u ∈ Kr . By assumption, (xr , yr ) is not a solution of GVI(T, K ) for every r > 0. From
Theorem 5.1 of [4], we conclude that {xr }r>0 is an EFE(T, K ).

Remark 4.2 Since H is barreled and has the weak-star Bolzano–Weierstrass property, the
condition (i) in Theorem 4.1 can be replaced by requiring that T is bounded and satisfies the
(S)1+ condition; see Theorem 3.5.

Theorem 4.3 Let T : K −→ H be a mapping continuous on co(E) for every nonempty
compact set E ⊂ K . If either

(i) T satisfies the (S)+ condition, or
(ii) T is bounded and satisfies the (S)1+ condition,

then either NCP(T, K ) has a solution or there is an EFE(T, K ).
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